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ОСОБЛИВОСТІ ВПЛИВУ БОРОШНИСТОЇ РОСИ (SAWADAEA 

BICORNIS (WALLR.) MIYABE) НА ПРОЦЕС ФОТОСИНТЕЗУ СІЯНЦІВ 

КЛЕНА ГОСТРОЛИСТОГО (ACER PLATANOIDES L.) 

У статті наведено результати досліджень впливу Sawadaea bicornis (Wallr.) 

Miyabe на стан фотосинтетичного апарату сіянців  Acer platanoides L. за 

допомогою методики вимірювання індукції флуоресценції хлорофілу (ІФХ), яка 

на сучасному етапі може бути запроваджена завдяки використанню біосенсорів. 

Клен гостролистий (Acer platanoides Linnaeus, 1753) є однією з найпоширеніших 

порід природних листяних лісів та міських насаджень Центральної Європи. Це 

швидкорослий вид, здатний рости в широкому діапазоні ґрунтів і умов 

існування. Дерева клена гостролистого стійкі до забруднення повітря, однак не 

досить довговічні, особливо в умовах міста, де вони більш вразливі для 

патогенів. Однією з найпоширеніших хвороб, що вражає молоді проростки і 

дорослі рослини клена гостролистого, є борошниста роса, спричинена 

паразитним грибом Sawadaea bicornis (Wallroth) Miyabe 1937. Негативний вплив 

цього фітопатогену множинний, і його можна класифікувати як прямий (гриби 

забирають поживні речовини з рослини-господаря) і непрямий (вкриваючи 

поверхню листка, епіфітний міцелій зменшує асиміляцію). Дослідження 

проводилися протягом вегетаційного сезону 2023 р. на території Ботанічного 

саду Дніпровського національного університету імені Олеся Гончара. На його 

території закладено дві пробні ділянки, у межах яких обрано по 14 одно-, 

дворічних сіянців (7 уражених S. bicornis та 7 не уражених) клена гостролистого 

(A. platanoides) із близькими морфологічними характеристиками (висота 10–15 см). 

Для діагностики порушення фотосинтезу нативного хлорофілу в живому листку 

A. platanoides використовували портативний флуорометр «Флоратест» 

(спектральний діапазон вимірювання інтенсивності флуоресценції 670–800 нм).  

Аналіз отриманих даних свідчить про високу чутливість параметрів індукції 

флуоресценції хлорофілу до уражень хворобами та умов місця зростання сіянців 

A. platanoides. Виявлено високу інформативність індукційних змін 

флуоресценції хлорофілу в структурній організації хлоропластів листків клена 

гостролистого, що визначаються параметрами Fo, Fm, Fv, Fv/Fо, Fv/Fm, (Fm–Fst)/Fst, 

(Fp–Fо)/Fv.  Наші дослідження показали, що методика ІФХ з використанням 

апарата «Флоратест» дозволяє експресно визначати загальний стан рослини 

шляхом оцінки основного процесу життєдіяльності, а саме фотосинтезу. Аналіз 

параметрів флуоресценції хлорофілу є потужним і ефективним інструментом 

для визначення впливу паразитного гриба на рослину.  

Ключові слова: грибкові захворювання рослин, інтенсивність індукції 

флуоресценції хлорофілу, фотосинтетичний апарат рослин, біосенсори. 
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CHARACTERISTICS OF POWDERY MILDEW EXPOSURE (SAWADAEA 

BICORNIS (WALLR.) MIYABE) ON THE PHOTOSYNTHETIC PROCESS  

IN NORWAY MAPLE (ACER PLATANOIDES L.) SEEDLINGS 

The article presents the results of research on impact of Sawadaea bicornis 

(Wallr.) Miyabe on the state of photosynthetic apparatus in Acer platanoides L. 

seedlings using a technique of chlorophyll fluorescence induction (ChlF) 

measurement, which at the present time can be implemented through the use of 

biosensors. Norway maple (Acer platanoides Linnaeus (1753) is one of natural 

deciduous tree species the most common in forests and urban stands of Central 

Europe. It is a fast-growing tree that can grow in a wide range of soil and 

environmental conditions. Norway maple trees are resistant to air pollution, but they 

do not long-live enough, especially in an urban environment where they are more 

vulnerable to pathogens. The powdery mildew disease caused by a parasitic fungus 

Sawadaea bicornis (Wallroth) Miyabe 1937 is one of the most common diseases 

affecting both young seedlings and adult Norway maple plants. The negative effects of 

this phytopathogen are multiple and can be classified as direct (fungi take up nutrients 

from the host plant) and indirect (the epiphytic mycelium reduces assimilation by 

covering the leaf surface). The research was conducted during 2023 growing season in 

the territory of the Botanical Garden of Oles Honchar Dnipro National University. 

Two test sites were laid on its territory, within which 14 one- to two-year-old 

seedlings of Norway maple (A. platanoides) were selected (7 affected by S. bicornis 

and 7 intact); the seedlings have similar morphological features (height 10–15 cm). To 

diagnose a violation of the native chlorophyll photosynthesis in fresh leaves of 

A. platanoides, a portable fluorometer “Floratest” was used (selected spectral range 

for fluorescence intensity measurement was 670–800 nm). Analysis of the data 

obtained indicates a high sensitivity of the parameters of chlorophyll fluorescence 

induction to damage by the disease and environmental conditions of local growth of 

A. platanoides seedlings. The high informativeness of induction changes in 

chlorophyll fluorescence in the structural organization of chloroplasts in Norway 

maple leaves determined by the parameters Fo, Fm, Fv, Fv/Fо, Fv/Fm, (Fm–Fst)/Fst,  

(Fp–Fо)/Fv was revealed. Our studies have shown that the ChlF method using the 

“Floratest” device allows express identification of the plant general status by assessing 

its main vital process, namely photosynthesis. Analysis of chlorophyll fluorescence 

parameters is a powerful and effective tool for determining the effect of a parasitic 

fungus on a host plant. 

Keywords:  fungal plant diseases, the intensity of chlorophyll fluorescence 

induction, plant photosynthetic apparatus, biosensors. 
  

 

Вступ 

Постійні зміни клімату в бік аридизації стають причиною погіршення 

умов для зростання дерев і виконання ними екологічних та соціальних функцій  

[24]. Якісна оцінка реакції дерев на екстремальні кліматичні умови та пов'язані з 

цим зміни в місцях зростання дерев є важливою частиною догляду за міськими 

зеленими насадженнями [12]. Міське середовище являє собою широкий спектр 
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стресових факторів із серйозним негативним впливом на міську рослинність [16, 

25]. Антропогенне забруднення, тривалі літні посушливі періоди з високою 

температурою повітря та наявністю парникових газів викликають ефект 

міського теплового острова, що суттєво впливає на фізіолого-біохімічні 

особливості та імунітет міських рослин [31]. 

Клен гостролистий (Acer platanoides Linnaeus, 1753) є однією з 

найпоширеніших порід природних листяних дерев лісів та міських насаджень 

Центральної Європи. Це швидкорослий вид, здатний рости в широкому 

діапазоні ґрунтів і умов існування. Клен гостролистий інтенсивно висаджують 

як декоративне та тіньове дерево, цінують за велику розлогу щільну крону та 

різнокольорове листя восени [13]. У Північній Америці A. platanoides – це 

розповсюджений інвазійний вид, що натуралізувався в різних місцезростаннях. 

Дерева клена гостролистого стійкі до забруднення повітря, однак не досить 

довговічні особливо в умовах міста, де вони більш вразливі для патогенів [11]. 

Ураження фітопатогенними грибами знижує їх декоративність, а також 

призводить до порушення фотосинтезуючих та транспіраційних процесів, 

викликають всихання та відмирання як окремих гілок, так і дерев загалом [17]. 

Однією з найпоширеніших хвороб, що вражає молоді проростки і дорослі 

рослини клена гостролистого, є борошниста роса, спричинена паразитним 

грибом Sawadaea bicornis (Wallroth) Miyabe 1937. Негативний вплив цього 

фітопатогену множинний, і його можна класифікувати як прямий (гриби 

забирають поживні речовин з рослини-господаря) і непрямий (вкриваючи 

поверхню листка, епіфітний міцелій зменшує асиміляцію) [5]. Вплив 

борошнистої роси на рівні листка сильно залежить від часу і тяжкості 

зараження, оскільки сприйнятливість листя до фітопатогену залежить від його 

віку. Більш уразливі для ураження S. bicornis молоді листки і верхівки пагонів, 

тому спочатку борошнисту росу можна зустріти саме на верхівках рослин. При 

сильному ураженні нальотом покриваються всі листки і стебла, після чого вони 

жовтіють і засихають. Борошниста роса є однією з найбільш небезпечних 

захворювань рослин, особливо на ранніх етапах онтогенезу, оскільки здатна 

зупинити ріст проростків, суттєво погіршити зимівлю, викликати повне 

опадання листя та істотно виснажити рослину [23]. 

Ефект стресу та пристосованість дерева до зміненого середовища часто 

оцінюють за допомогою вимірювання флуоресценції хлорофілу [8]. Цей метод є 

надійним, швидким, неруйнівним і на даний момент має широку область 

використання в умовах польових випробувань. Результати є репрезентативними 

в дослідженнях рослин під впливом абіотичного стресу. Метод флуоресценції 

хлорофілу був застосований під час оцінки міських насаджень A. platanoides. 

Було виявлено, що максимальний вихід флуоресценції (Fv/Fm) та швидкість 

транспорту електронів (ETR) у рослин клену гостролистого з міських насаджень 

були нижчими, ніж у дерев з сільської місцевості. Показано реакції дерев  

A. platanoides на різні стресові фактори, такі як посуха, підвищення температури 

[14], засолення [28], дефіцит поживних речовин, важкі метали [21]. 

Фотосинтез є універсальним процесом виживання рослин, а імунний 

захист – ключовим процесом адаптації рослин до умов зростання. Різні 

дослідження показали, що ці два процеси взаємопов'язані в складній мережі [2]. 

Фотосинтез може впливати на сигнальні шляхи і забезпечувати матеріали та 

енергію для імунного захисту, у той час як процес імунного захисту також може 
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зворотно впливати на фотосинтез [18]. Зараження патогеном призводить до змін 

параметрів фотосинтезу (включаючи Pn або нетто-фотосинтез, Gs або продихову 

провідність і Ci або внутрішньоклітинний СО2), біохімічних матеріалів (таких як 

SOD і CAT), сигнальних молекул (такі як H2O2 і гормони), експресії генів, що 

беруть участь у фотосинтезі. Відомо, що зміни в активності фотосинтезу 

пов'язані з рівнем резистентності господаря, тривалістю хвороби після 

зараження і локалізації інфекції [3]. 

У заражених борошнистою росою листках спостерігаються серйозні 

порушення у циклі трикарбонових кислот і здатності до перенесення електронів, 

а також значне зниження вмісту хлорофілу, максимальної фотохімічної 

ефективності (Fv/Fm), фактичної фотохімічної ефективності фотосистеми II 

(PSII) і швидкості перенесення електронів (ETR) [29]. 

Борошниста роса знижує засвоєння вуглецю і транслокацію вуглеводів із 

заражених листків до інших частин рослин. Зниження засвоєння вуглецю 

пов'язане як із впливом інфекції на максимальний потік електронів, керований 

світлом, так і на уявну максимальну швидкість карбоксилювання [19]. 

У хлоропластах, виділених з уражених борошнистою росою листків, 

відмічене зниження швидкості перенесення електронів від води до НАДФ і 

супутнього утворення АТФ при нециклічному фотофосфорилюванні. Через 

інгібування нециклічного фотофосфорилювання знижується швидкість 

фотосинтетичної асиміляції CO2 і відносного збільшення вмісту амінокислот. Ці 

зміни супроводжуються змінами ультраструктури хлоропластів та зниженням 

активності ферментів, необхідних для утворення органічних сполук 

(фосфоенолпіруваткарбоксилази і малатдегідрогенази) [32]. 

Основною метою даного дослідження було дослідити вплив S. bicornis на 

фізіологію фотосинтезу листків клена гостролистого, використовуючи 

параметри неруйнівної флуоресценції. Вимірювання флуоресценції хлорофілу 

може надати корисну додаткову інформацію для розуміння первинних процесів 

фотосинтезу та впливу стресу на фотохімію. Крім того, дане дослідження 

спрямоване на визначення параметрів флуоресценції хлорофілу, які можуть 

кількісно оцінити зміни PСІІ, пов’язані з реакцією A. platanoides на стрес, 

спричинений S. bicornis. 

Матеріали та методи дослідження 

Дослідження проведені протягом вегетаційного сезону 2023 р. у м. Дніпро 

(північно-степова підзона України). Місто розташоване в зоні помірних широт з 

досить активною атмосферною циркуляцією (переважним переміщенням 

повітряних мас зі сходу на захід). Клімат помірно-континентальний. Однією з 

особливостей клімату території є значні коливання погодних умов з року в рік. 

Помірно вологі роки чергуються з різко посушливими, нерідкі суховії. У цілому 

клімат характеризується досить прохолодною зимою і спекотним літом.  

На території м. Дніпро у 1931 р. засновано Ботанічний сад Дніпровського 

національного університету імені Олеся Гончара (48°26' N, 35°02' E; 127 м над 

рівнем моря). На його території закладено дві пробні ділянки, у межах яких 

обрано по 14 одно-, дворічних сіянців (7 уражених S. bicornis та 7 не уражених) 

клена гостролистого (A. platanoides) із близькими морфологічними 

характеристиками (висота 10–15 см) (рис.1). У цілому ґрунти обраної ділянки 

представлені урбогрунтами, сформованими на зональних чорноземах звичайних 

малогумусових середьосуглинистих на лесовидних суглинках.  
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Для діагностики порушень фотосинтезу нативного хлорофілу в живому 

листку A. platanoides використано портативний флуорометр «Флоратест». Цей 

апарат складається з базового блоку з графічним рідиннокристалічним 

дисплеєм, кнопками управляння, виносного оптоелектронного сенсора, кабелю 

під’єднання до USB-порту персонального комп’ютера та мережевого адаптера 

(рис. 1, а). У виносному оптоелектронному сенсорі знаходиться світлодіод, який 

має максимальну інтенсивність випромінення на λ = (470 + 20) нм. Показники 

опромінення в сенсорі: довжина хвилі опромінення 470 + 15 нм; спектральний 

діапазон вимірювання інтенсивності флуоресценції 670–800 нм; площа 

приймального вікна 9 мм2; чутливість фотоприймача на λ = 650 нм 0,45 А/W. 

Виміри проводили на живих листках A. platanoides. Після початку дії 

світла інтенсивність флуоресценції хлорофілу (індукція флуоресценції або 

флуоресценція, індукована (наведена) світлом) починає істотно змінюватись з 

часом. Часова залежність інтенсивності флуоресценції хлорофілу має 

характерний вигляд кривої з одним чи кількома максимумами і отримала назву 

кривої індукції флуоресценції хлорофілу (крива Каутського) [10]. Зміни в будь-

якій ланці фотосинтезу призводять до зміни вигляду кривої індукції 

флуоресценції хлорофілу. Тому за виглядом цієї кривої можна діагностувати 

поточний стан фотосинтетичного апарата рослини, оцінювати зміни 

ефективності фотосинтезу при змінах світлового режиму, температури, 

вологості та інших чинників [9]. 

 

 
            а                    б 

Рис. 1. Піддослідні паростки A. platanoides (а) та прилади для виміру параметрів 

фотосинтезу (б): 1 – портативний флуорометр «Флоратест» (Україна, 2016);  

2 – люксметр РСЕ-174 (PCE Instruments, Німеччина, 2018); 3 – термогігрометр 

НЕ-173 (HUATO ELECTRONIC CO.LTD, КНР, 2018) 
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Для інтерпретації кривої Каутського ми використали відомі її критичні 

параметри: Fo – початкове значення індукції флуоресценції після включення 

опромінення; Fp – значення індукції флуоресценції «плато»; Fm – максимальне 

значення індукції флуоресценції; FSt – стаціонарне значення індукції 

флуоресценції після світлової адаптації листка рослини. Окрім критичних 

параметрів кривої Каутського нами було використано розрахункові: Fv=Fm–Fo – 

змінна флуоресценція хлорофілу; Fv/Fm – максимальна ефективність первинних 

процесів фотосинтезу; Fv/Fо – представляє потенційну активність PSII і 

відображає активність центру PSII; (Fm–FSt)/FSt – коефіцієнт ефективності 

фотохімічних процесів; (Fp–Fо)/Fv – частка QА-акцепторів невідновлюваних 

реакційних центрів PSII.  

Результати та їх обговорення 

Фотосинтез є одним з найуразливіших до стресових чинників процесом, 

тому вагому інформацію про стан фотосинтетичного апарата рослини, що 

знаходиться під впливом фітопатогена, можна дослідити методом 

флуоресценційного аналізу [9]. Швидкість фотосинтезу та транспортування 

електронів є ключовими фізіологічними характеристиками рослин, які можуть 

швидко реагувати на раптові зміни впливу сонячного випромінювання. У 

кінетиці індукційних переходів флуоресценції хлорофілу значну роль відіграють 

світлова і темнова фази фотосинтезу. Для оцінки стану фотосинтетичного 

апарата використовують комплекс параметрів, серед яких Fo, Fm, Fv, Fv/Fо, Fv/Fm, 

(Fm–Fst)/Fst, (Fp–Fо)/Fv є одними з ключових [29]. 

Вплив паразитного гриба S. bicornis спричинив у рослин A. platanoides 

досить різні за інтенсивністю і спрямованістю зміни індукції флуоресценції 

хлорофілу (табл. 1). Показник Fo залежить від втрат енергії збудження при її 

міграції по пігментній матриці світлозбиральних комплексів. У заражених 

борошнистою росою листках клена гостролистого з ділянки 1 і ділянки 2 цей 

показник зменшувався відповідно на 16.3 і 19.3 % у порівнянні з незараженими, 

що свідчить про зменшення втрати енергії під час її міграції до реакційних 

центрів (РЦ). Зі зменшенням кількості антенних хлорофілів знижується 

початковий рівень флуоресценції і навпаки. Отримані дані свідчать про 

зменшення ефективності використовувати поглинуте світло у заражених листків 

клена гостролистого [34].  

Параметр Fm характеризує найвищий рівень флуоресценції хлорофілу, що 

реєструється у вигляді максимуму на індукційній кривій. Йому властивий 

найбільш варіабельний характер, що зумовлено адаптивними змінами у 

структурі пігментного комплексу. За умов насиченої інтенсивності світла 

максимальне значення флуоресценції  на індукційній кривій зобов’язане 

динамічній рівновазі між процесами флуоресценції, фотохімії та теплової 

дисипації. Вважається, що в точці Fm, за умов максимальної флуоресценції 

фотосинтез характеризується мінімальним рівнем [35]. Відрізок кривої 

Каутського від Fo до Fm відображає швидке відновлення QA-акцепторів 

реакційних центрів PSII, які не беруть участі у транспорті електронів на QВ-

акцептори, та повільніше відновлення QA в комплексах PSII, які задіяні в 

транспорті електронів на пул пластохінонів. Частина кривої Каутського від 

фонової флуоресценції до максимальної є швидкою фазою флуоресценції і 

триває до 1 с. Індукційні переходи, які відбуваються після досягнення піку 

флуоресценції, об’єднані в повільну фазу флуоресценції, яка залежить від 
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окисно-відновного стану QA (фотохімічного гасіння флуоресценції) та рівня 

теплової дисипації (нефотохімічного гасіння) [15]. У структурі пігментного 

комплексу заражених борошнистою росою листків A. platanoides виявлено 

зменшення значення Fm на 42.3–45.5 % незалежно від умов проростання. Це 

може бути пов’язано з блокуванням ресинтезу хлорофілу, деградацією, 

руйнуванням структури хлоропластів та зменшенням їхньої кількості за впливу 

S. bicornis. 

 

Таблиця 1  

Описова статистика параметрів флуоресценції  

(середнє ± стандартне відхилення, N = 7) 

Показник 
Незаражені листки Заражені листки 

Локація 1 Локація 2 Локація 1 Локація 2 

Fo 322.3±22.3 413.4±33.6 269.7±61.1 333.7±51.1 

Fm 1939.4±187.7 2534.6±166.3 1119.7±287.9 1382.6±335.7 

Fv 1617.1±169.6 2090.3±199.1 850±241.7 1106±382.4 

Fst 1605.7±123.8 2114.6±149.5 936.9±236.9 1230.9±365.3 

Fp 1052.3±117.1 1856±127.4 744.6±227.5 1118.3±302.1 

Fv/Fо 5.01±0.35 5.07±0.43 3.17±0.64 3.28±0.82 

Fv/Fm 0.83±0.01 0.82±0.05 0.76±0.04 0.78±0.08 

(Fm–Fst)/Fst 0.21±0.06 0.20±0.05 0.19±0.05 0.14±0.07 

(Fp–Fо)/Fv 0.45±0.03 0.69±0.04 0.55±0.08 0.71±0.07 

 

Значення варіабельної флуоресценції хлорофілу в дослідних рослин на 

обох локаціях знаходилось у значному діапазоні 850–2900 у.о. Мінімальне 

значення (850±241.7 у.о.) зафіксовано у заражених борошнистою росою листках 

клена гостролистого з ділянки 1. У той час як найбільше значення Fv 

(2090.3±199.1 у.о.) зафіксовано у незаражених листках клену з локації 2. 

Оскільки варіабельна флуоресценція Fv визначається окисно-відновним статусом 

QА, її рівень є індикатором фотохімічних окисно-відновних процесів. У випадку 

якщо транспорт електронів від QA до наступних компонентів ЕТЦ блокується 

або інтенсивність освітлення вище максимального рівня, насичення Fv, швидко 

досягає можливих значень. Тому будь-які фактори, що впливають на процес 

електронного транспорту в ЕТЦ тилакоїдів, будуть позначатись і на значеннях 

Fv. Ця обставина дозволяє використовувати параметр Fv як фізіологічний 

показник, що відображає зовнішні впливи на рослини [1]. 

За співвідношенням Fv/Fm оцінюють квантовий вихід PSII. Збільшення 

цього показника свідчить про підвищення ефективності роботи PSII, зменшення – 

про порушення функціональної активності комплексів PSII внаслідок дії 

стресових чинників. Чутливість Fv/Fm до інгібування світлової фази фотосинтезу 

робить цей показник ефективним засобом моніторингу стресових впливів 

навколишнього середовища на рослини. Величина Fv/Fm може бути легко 

виміряна. Завдяки чутливості, швидкості реакцій та неінвазійності визначенню 

параметра Fv/Fm часто надається перевага при дослідженнях найрізноманітніших 

світлових реакцій фотосинтезу [7]. У мертвих клітин він дорівнює 0. Крім того, 
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він може бути використаний для оцінки ростових процессів [27]. Вважається, що 

значення Fv/Fm на рівні 0,81–0,83 характерні для повноцінно функціонуючої PSII 

в оптимальних для вегетації умовах, а при стресі спостерігається зменшення 

показника Fv/Fm [20]. У A. platanoides за впливу S. bicornis показники Fv/Fm були 

нижче оптимального рівня, що вказує на зниження ефективності  PSII заражених 

листків. Зниження Fv/Fm, свідчить про поступове скорочення світлозбиральної 

антени PSII завдяки деградації пігмент-білкових комплексів в її складі [36]. 

Отже, відношення Fv/Fm є ефективним засобом моніторингу стресових чинників 

на рослину, оскільки є чутливим до інгібування світлової фази фотосинтезу [6]. 

Ще одним параметром, що демонструє ефективність PSII, є максимальний 

квантовий вихід системи фотолізу води – Fv/Fо. Цей параметр є більш чутливим 

детектором стресу рослин, оскільки нормований за вимірюваннями мінімальної 

флуоресценції (Fо), а не  максимальної флуоресценції (Fm), як у співвідношенні 

Fv/Fm. Зниження значення Fm та збільшення значення Fо призводить до суттєвих 

змін параметра Fv/Fо, у той час як зміни параметра Fv/Fm не такі помітні [26]. За 

впливу паразитного гриба S. bicornis на рослини A. platanoides з локації 1 і 

локації 2 параметр Fv/Fm  зменшувався на 4.9–8.4 %, а параметр Fv/Fо аж на  

35.3–36.7 %, що підтверджує його чутливість та виявляє стрес [22]. 

Ще одним показником, важливим для оцінювання функціонального стану 

листків, є коефіцієнт ефективності темнових фотохімічних процесів –  

(Fm–Fst)/Fst. Цей параметр демонструє величину гасіння флуоресценції, на яку 

впливають як фотохімічні (фіксація СО2), так і нефотохімічні процеси (теплова 

дисипація енергії збудженого стану молекул хлорофілу) [33]. Параметр  

(Fm–Fst)/Fst тісно корелює з ефективністю головного фермента циклу Кальвіна 

рибулозобісфосфаткарбоксилази і характеризує адаптивність рослин до умов 

середовища [4]. У досліджених рослин A. platanoides він змінювався в межах 

0.14–0.22: найнижчу ефективність фотохімічних процесів зафіксовано у 

заражених листках клена з локації 2, що на 30 % менше в порівнянні з 

незараженими. 

Базуючись на показниках Fm і Fst та розрахунковому параметрі (Fm–Fst)/Fst, 

що визначають форму спадної частини кривої Каутського, можна стверджувати, 

що активізація та перебіг реакцій циклу Кальвіна і проходження речовин через 

мембрани й судини листків були ефективнішими у незаражених борошнистою 

росою рослин клена гостролистого. 

Показник перебігу фотосинтезу (Fp–Fо)/Fv, який характеризує відносну 

кількість неактивних реакційних центрів відносно загального числа реакційних 

центрів, у дослідних рослин був у межах 0.45–0.71. Вплив борошнистої роси на 

рослини клена гостролистого з локації 1 призводили до зростання значення  

(Fp–Fо)/Fv  на 22.2 %. Цей параметр інформує про швидкість насичення 

неактивних реакційних центрів PSII, яка відповідає за розклад води і виділення 

кисню [30]. Підвищення параметра (Fp–Fо)/Fv означає порушення як у міграції 

енергії, так і в транспорті електронів, а зниження свідчить про можливе 

прискорення електрон-транспортних процесів.  

Висновки 

Аналіз отриманих даних свідчить про високу чутливість параметрів 

індукції флуоресценції хлорофілу до уражень хворобами та умов місця 

зростання сіянців A. platanoides. Виявлено високу інформативність індукційних 

змін флуоресценції хлорофілу в структурній організації хлоропластів листків 
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клена гостролистого, що визначаються параметрами Fo, Fm, Fv, Fv/Fо, Fv/Fm,  

(Fm–Fst)/Fst, (Fp–Fо)/Fv. Установлено, що в заражених борошнистою росою 

листках не тільки зменшується інтенсивність флуоресценції, що вказує на 

зменшення кількості хлорофілів, які не беруть участь у фотосинтетичному 

переносі енергії на реакційні центри в ушкоджених листках, а й практично 

зникають індукційні зміни, що вказують на гальмування фотохімічних процесів, 

а саме переносу енергії на реакційні центри, відтоку ферментів циклу Кальвіна 

тощо. Виявлено більшу чутливість параметра Fv/Fо  до впливу S. bicornis 

порівняно з параметром Fv/Fm, що має заохочувати дослідників використовувати 

його частіше для оцінки впливу хвороб на показник ефективності фотосинтезу. 

Підвищення параметру (Fp–Fо)/Fv означає порушення як у міграції енергії, так і в 

транспорті електронів, а зниження свідчить про можливе прискорення електрон-

транспортних процесів. Результати отриманих коефіцієнтів ефективності 

темнових фотохімічних процесів (Fm–Fst)/Fst свідчать про кращий фізіологічний 

стан незаражених дослідних паростків клена. За впливу паразитного гриба  

S. bicornis цей параметр зменшувався порівняно з незараженими листками, що 

вказувало на сильне пригнічення процесу асиміляції CO2 і взаємодію між 

світловими і темновими реакціями фотосинтезу. 
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